Enrollment No: ____

Exam Seat No:_____

_____ **C.U.SHAH UNIVERSITY** Winter Examination-2021

Subject Name: Discrete Mathematics

Subject Code: 4TE04DSM2		Branch: B.Tech (CE)	
Semester : 4	Date : 20/10/2021	Time : 11:00 To 02:00	Marks : 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1	Attempt the following questions:	(14)
a)	Find the least and greatest element in the poset $\langle S_{30}, D \rangle$, if they exist.	
b)	Define: Poset, Pseudo Graph	(02)
c)	State Pigeonhole principle.	(02)
d)	Find the atom and anti-atom of $\langle S_{90}, D \rangle$.	(02)
e)	Prove that $(ab+ab')a'b'=0$.	(02)
f)	$(Z_{11}, +_{11})$ is cyclic group True or False?	(01)
g)	How many edges are there in a graph with 7 vertices each of degree 4?	(01)
h)	How many Quantifiers are there? Name them.	(02)
Attempt	any four questions from Q-2 to Q-8	
Q-2	Attempt all questions.	(14)
a)	State and prove Stone's representation theorem.	(10)
b)	Defien: Semi group, Monoid, Subgroup	(04)
Q-3	Attempt all questions	(14)
a)	Show that $\{0, 2, 4, 6\}$ is a subgroup of $(Z_8, +_8)$, where $+_8$ is addition modulo 8.	(05)
b)	Prove that $\langle S_{35}, D \rangle$ is a complemented lattice and also draw the Hasse diagram of it.	(05)
c)	Prove that $\langle S_6, D \rangle$ is a sub lattice of $\langle S_{30}, D \rangle$.	(04)
Q-4	Attempt all questions	(14)
a)	Show that the set $Q \setminus \{1\}$ is an abelian group with respect to the binary operation $a * b = a + b - ab$, for all $a, b \in G$.	(07)

Page 1 of 3

b) Prove that
$$1+2+3+...+n = \frac{n(n+1)}{2}$$
 by using mathematical induction. (07)

- **a)** For a lattice $\langle P(\{a,b,c\}),\subseteq \rangle$, answer the following questions: (07)
 - i) Find cover of each element and draw the Hasse diagram.
 - ii) Find lower bound, upper bound, greatest lower bound, least upper bound of $A = \{\{a, b\}\}$.
 - iii) Find the least and greatest element of it.

b) Let $\langle L, \leq \rangle$ be a lattice $a, b \in L$ then prove that (07)

i)
$$a \le b \Leftrightarrow a \ast b = a \Leftrightarrow a \oplus b = b$$
 ii) $a \le c \Leftrightarrow a \oplus (b \ast c) \le (a \oplus b) \ast c$

Q-6 Attempt all questions

(14)

(14)

- a) i) Draw the graph represented by given adjacency matrix $\begin{bmatrix} 1 & 1 & 2 & 0 \\ 2 & 0 & 1 & 2 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 0 \end{bmatrix}$. (07)
 - ii) Write the adjacency matrix from the given digraph.

b) State and prove Lagrange's theorem. (05)

c) Define: Propositional function. (02)

Q-7 Attempt all questions.

- a) Obtain the sum of product canonical form of the Boolean expression in three (05) variables $\alpha(x, y, z) = (x * y)' * z$.
- **b**) Prove that (Z_8^*, \times_8) is a group. Is it commutative? (05)

c) Find all node base of the following diagraph shown in the figure.

Q-8 Attempt all questions.

- a) Define tree and draw a directed tree from following and also find the representation of (07) binary tree. $(v_0(v_1(v_2)(v_3(v_4)(v_5)))(v_6(v_7(v_8))(v_9)(v_{10})))$
- **b**) Do as directed:
 - Translate the following in your own words.
 A(x): x is a shark, B(x): x is a fish, C(x): x lives in water.
 i) (∃x)(B(x) ∧ ~ A(x)) ii) (∀x)(A(x)∨C(x))⇒B(x)

2) Solve the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2}$, $n \ge 2$; $a_0 = 1$, $a_1 = 2$.

Page 3 of 3

(14)

(07)